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Short-time Lyapunov exponent analysis is a new approach to the study of the 
stability properties of unsteady flows. At any instant in time the Lyapunov 
perturbations are the set of infinitesimal perturbations to a system state that will 
grow the fastest in the long term. Knowledge of these perturbations can allow one to 
determine the instability mechanisms producing chaos in the system. This new 
method should prove useful in a wide variety of chaotic flows. Here it is used to 
elucidate the physical mechanism driving weakly chaotic Taylor-Couette flow. 

Three-dimensional, direct numerical simulations of axially periodic Taylor- 
Couette flow are used to study the transition from quasi-periodicity to chaos. A 
partial Lyapunov exponent spectrum for the flow is computed by simultaneously 
advancing the full solution and a set of perturbations. The axial wavelength and the 
particular quasi-periodic state are chosen to correspond to the most complete 
experimental studies of this transition. The computational results are consistent with 
available experimental data, both for the flow characteristics in the quasi-periodic 
regime and for the Reynolds number a t  which transition to chaos is observed. 

The dimension of the chaotic attractor near onset is estimated from the Lyapunov 
exponent spectrum using the Kaplan-Yorke conjecture. This dimension estimate 
supports the experimental observation of low-dimensional chaos, but the dimension 
increases more rapidly away from the transition than is observed in experiments. 
Reasons for this disparity are given. Short-time Lyapunov exponent analysis is used 
to show that the chaotic state studied here is caused by a Kelvin-Helmholtz-type 
instability of the outflow boundary jet of the Taylor vortices. 

1. Introduction 
At any given time many physical processes may be active in a turbulent flow. To 

correctly analyse such a flow, it is necessary to discover which of these processes are 
of primary importance in producing and maintaining the turbulence. This daunting 
task has previously been attempted by making a priori assumptions about the nature 
of the turbulence. It is then a secondary task of the researcher to show that these 
assumptions are justified aposteriori. In  this paper we report on the first test of short- 
time Lyapunov exponent analysis, a method we have developed for determining the 
important physical instabilities in complex fluid flows. This new technique makes use 
of the relatively recent insights into the nature of turbulence provided by dynamical 
systems theory. 

Temporal Fourier analysis of turbulent flows results in broadband power spectra, 
which until recently was taken to  imply that a continuum of temporal frequencies of 
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motion are excited in turbulent flow. It is now generally accepted that this is not the 
case. Thus turbulence is neither multiply periodic nor stochastic, but is aperiodic. 
The phase-space attractors for this aperiodic motion, now termed chaos, have a 
complicated (fractal) structure which led Ruelle & Takens (1971, see also Newhouse, 
Ruelle & Takens 1978) to call them ‘strange attractors ’, Fully developed turbulence 
in a finite domain thus involves a large but finite number of degrees of freedom. 

The first confirmation of these mathematical ideas in a fluid dynamic system was 
in experiments on Taylor-Couette flow (Gollub & Swinney 1975 ; Fenstermacher, 
Swinney & Gollub 1979). These experiments detailed a direct transition from two- 
frequency quasi-periodicity to aperiodic motion with a broadband power spectrum. 
Brandstater and co-authors (Brandstater et al. 1983 ; Brandstater & Swinney 1987) 
analysed experimental time series data at Reynolds numbers just past the onset of 
aperiodicity and found that to within experimental uncertainty the system exhibited 
low-dimensional chaos. The experimentally determined dimension of the chaotic 
attractors increased slowly with Reynolds number. Since these results appeared, 
there has been an explosion of theoretical, experimental, and computational research 
on chaotic systems. It is therefore ironic that the first example of chaotic transition 
in hydrodynamics, Taylor-Couette flow, has remained relatively poorly understood. 

The short-time Lyapunov exponent analysis technique described in this paper is 
used to determine the mechanism underlying the transition to chaos in Taylor- 
Couette flow as described by Brandstater et al. (1983). In  addition to the general 
interest in Taylor-Couette flow as an important problem in the study of transition 
to turbulence, this flow has two advantages for testing the short-time Lyapunov 
exponent analysis. First, the transition to chaos is gradual; that is, immediately 
beyond the transition to chaos the system is only weakly chaotic, making the 
analysis simpler. Secondly, there is a wealth of experimental data on this flow, and 
in particular the transition to chaos studied here has been well documented by 
Brandstater et al. 

To present the results of this study we must draw on two large bodies of research, 
the first on Taylor-Couette flow and the second on dynamical systems theory. The 
succeeding section contains the necessary reviews of these topics ; in addition, $2.2 
provides the mathematical basis for the short-time Lyapunov exponent analysis. In 
$3  the results of the simulations are presented and compared with the experiments. 
An analysis of the transition to chaos using short-time Lyapunov exponent analysis 
is presented in $4, and a summary of this research and concluding remarks are 
provided in $5. 

2. Background 
2.1. Taylor-Couette flow 

Flow between concentric rotating cylinders, Taylor-Couette flow, has been studied 
by experimentalists and theorists for over 100 years. A brief overview of the 
experimental and theoretical results relevant to the current study are given below. 
The review by DiPrima & Swinney (1981) and the references therein should be 
consulted for further details. I n  the cases considered here, the outer cylinder is fixed 
and the inner cylinder rotation frequency is 0. Consider the ( r ,  8,  z) cylindrical 
coordinate system with the axis of the cylinders on the z-axis. Let the inner cylinder 
radius be Ti, the outer cylinder radius be T o ,  and the gap be 6 = ro-r i .  The 
dimensionless parameters that  characterize the flow with the outer cylinder fixed are 
the radius ratio 9 = r i / ro,  the aspect ratio r = L/S, and the Reynolds number R = 
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2xriQS/v. Here L is the working axial height, and v is the kinematic viscosity. For 
ease of reference, we define a reduced radius r" = ( r - r i ) /6 ,  and a reference velocity 
U = 2nri Q (velocity of the inner cylinder). 

For moderately large radius ratios (7 x 718) and aspect ratios (f 2 20), a standard 
set of laminar flow states has been observed. Couette flow, observed for R near zero, 
is a steady state with no axial or aximuthal variations. At  a critical Reynolds 
number, R,, Taylor vortices appear. This steady state has a well-defined axial 
periodicity. A t  higher Reynolds numbers, first one and then two travelling waves 
appear on the Taylor vortices. These flows are, respectively, temporally periodic 
(wavy Taylor vortex flow) and quasi-periodic (modulated wavy vortex flow). 
Finally, the quasi-periodic flow gives way to a chaotic flow. 

Each successive transition introduces new flow features that are superposed on the 
previous flow. Couette flow has only an azimuthal component of velocity. Taylor 
vortex flow retains the azimuthal symmetry, but horizontal toroidal vortices are 
superposed on the basic Couette flow, with neighbouring vortices of opposite 
circulation. The borders between the vortices are alternating radial outflow and 
inflow jets. While the jets are identified by their radial velocity components, the 
strongest velocity component in both jets is azimuthal, and the jets carry a large 
fraction of the angular momentum flux in the flow. The periodic and quasi-periodic 
states result from azimuthal travelling waves on the boundary jets. In  wavy Taylor 
vortex flow the travelling wave has an integer azimuthal wavenumber m, and 
constant azimuthal rotation frequency wl/ml Q. Modulated wavy vortex flow has 
two travelling waves, and the second wave also has a well-defined wavenumber m2 
and rotation frequency w2/m2 a. Since the flow is quasi-periodic, w2/w,  is irrational. 

The most detailed experimental investigation of the transition from quasi- 
periodicity to chaos was performed by Brandstater and coworkers (Brandstater 
1984; Brandstater et al .  1983, Brandstater & Swinney 1987). The physical parameters 
of the experimental system were 7 = 0.875 and f = 20. The flow state chosen for 
study had eight pairs of Taylor vortices, giving an average axial wavelength of 2.56. 
For this case, the transition to Taylor vortex flow occurred at R, = 118.4 and 
modulated wavy vortices with wavenumbers m, = 4 and m2 = 4 appeared at  
R/R, x 10.0. A transition to aperiodic flow was observed a t  R/R, = 11.7. Extensive 
tests of the aperiodic state at and past transition showed that the flow exhibited low- 
dimensional chaos. Henceforth, any discussion of experimental results refers to the 
experiments of Brandstater & Swinney (1987) unless otherwise noted. 

It should be noted that flow states other than those discussed above are possible 
and indeed common. Even for fixed values of aspect ratio and axial and azimuthal 
wavelength, a variety of bifurcation sequences are possible, depending on the history 
of the flow. Coughlin (1990) investigated bifurcations from quasi-periodicity to three- 
frequency motion as well as a period-doubling transition to a chaotic state different 
from that observed by Brandstater & Swinney (1987). 

2.2. L yapunov exponent theory 
The spectrum of Lyapunov exponents is a fundamental description of the phase- 
space evolution of a dynamical system. In recent years Lyapunov exponents have 
been used to characterize the evolution of many low-dimensional chaotic systems. 
However, the numerical expense of computing accurate Lyapunov exponents for 
high-dimensional systems (e.g. our simulation of Taylor-Couette flow) has with a few 
exceptions (e.g. Keefe, Moin & Kim 1990) precluded their use in such systems. In this 
paper we show that an analysis of the short-time contributions to the long-time 
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average exponents and the associated perturbations can provide useful information 
about the physical mechanisms at work in a flow. This analysis does not suffer from 
the computational difficulties associated with determining the Lyapunov exponents. 

2.2.1. Lyapunov exponents 
The review article of Eckmann & Ruelle (1985) gives a good introduction to  the 

ideas of dynamical systems theory and in particular to the theory of the Lyapunov 
exponent spectrum, and should be consulted for details. For simplicity, the 
description here will be couched in the language of ordinary differential equations. 
Recent theoretical results (e.g. Constantin, Foias & Temam 1988) indicate that the 
analysis carries over directly to solutions of the Navier-Stokes equations, at least in 
physically relevant cases. 

Consider a solution vector x ( t )  of a forced dissipative system. If the solution is 
bounded, then it will almost certainly relax to some subset of the phase space called 
an attractor. Simple attractors include fixed points (steady states), periodic orbits 
(one-frequency motion), and n-tori (n-frequency motion). Strange or chaotic 
attractors are the type of interest here, and they are more difficult to define or 
describe (see the review by Eckmann & Ruelle 1985). The primary characteristic of 
chaos is that the system is unstable on the attractor ; that is, the system is confined 
to the attractor and perturbations off the attractor decay, but infinitesimal 
perturbations in one or more directions on the attractor grow a t  an exponential rate. 
Note that chaotic attractors for ideal mathematical systems are fractals, and thus 
have structure a t  all lengthscales in phase space; however, in real physical systems 
this structure is not accessible because at  some level it is overcome by noise (e.g. from 
instruments, round-off, external sources, etc.). 

Lyapunov exponents are generalized quantities analogous to the eigenvalues of 
the linearized stability equations at a steady state. Let the time evolution of a system 
be governed by 

with an initial condition x(0) on the attractor. An infinitesimal perturbation Sx to the 
system state will evolve according to 

&(t)  = J ( x ( t ) )  Sx(t), 

where J = dF/dx is the Jacobian. Given the base flow x ( t )  and an initial perturbation 
Sx(O), the future state of the perturbation can be formally expressed as 

X ( t )  = F ( x ) ,  

Sx(t) = M ( t ,  0) Sx(O), 

where M(t ,  0) = exp [ J ( x ( s ) )  ds. 
0 

If the initial norm of the perturbation is unity, then a t  time t the average exponential 
growth rate is 

and the long-time average exponential growth rate is 

A = limX(t). 
t+m 
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The long-time average A is independent of the initial flow state x(O), but is 
dependent on the choice of initial perturbation Sz(0). The possible values for A 
comprise the Lyapunov exponent spectrum of the attractor, ordered from largest to 
smallest, so A, > A, > A,. . . . An attractor is defined to be chaotic when A, is positive, 
indicating that there is a t  least one direction of exponential growth. However, for 
dissipative systems the sum of the Lyapunov exponents is negative, so there must also 
be negative exponents. A zero Lyapunov exponent corresponds to non-exponential 
growth. In particular, a perturbation exactly tangent to the trajectory is associated 
with a zero exponent. The spectrum of Lyapunov exponents can be used to estimate 
the fractal dimension of the attractor in phase space using the Kaplan-Yorke 
conjecture (Fredrickson et al. 1983). Assuming unit multiplicity (see below), the 
sum of the first k exponents is non-negative and the sum of the first ( k +  1 )  exponents 
is negative, then 

k 

2.2.2. L yapunov perturbations 
The short-time Lyapunov exponent analysis presented here relies on the properties 

of the perturbations Sx(t) associated with the Lyapunov exponents. The space of all 
possible (infinitesimal) perturbations at z ( t )  will be called the tangent space at  x( t ) .  
To simplify the discussion, it is again assumed that the phase space and the tangent 
spaces are !RN, for N finite. 

The multiplicative ergodic theorem, first proven by Oseledec (1968), states that 
the tangent space at  any time t (in particular, t = 0)  may be decomposed into a 
nested set of subspaces E,, such that !RN = El 3 E ,  3 ..., and 

log(~~M(t,O)Sx~~) = A ,  for SXEE, and Sx#E,+,. 
t+m 

Thus any initial perturbation that is not contained in E, will grow at the average rate 
A,, while perturbations in the restricted subspace E,  and not in E,  will grow as A,. 
This can be carried iteratively to any number of exponents. 

Now consider the Lyapunov exponents for the time-reversed system. An attractor 
for the time-forward system will become unstable when time is reversed, but it 
remains an invariant set, so the multiplicative ergodic theorem applies. Lyapunov 
exponents for the time-reversed system are exactly the same as for the time-forward 
case, but with opposite sign. The tangent space at  t = 0 can then be divided into a 
different set of subspaces E,, with El c E, ... c EN = 'illN, and 

- 

log(llM(t,O)Szll) = - A ,  for S x ~ i ? ,  and &x#i?,_,. 
t+-w 

Thus for the time-reversed system the least-constrained subspace corresponds to A,, 
and almost any perturbation will grow at  the average exponential rate -A,. 

These two sets of subspaces can be used to form a set of disjoint subspaces l( = 
E, n Ei (Eckmann & Ruelle 1985). If S X E ~ ,  then the long-time average exponential 
growth rate of Sx will be f A,, forward and backward in time. The dimension of F, is 
the multiplicity of the exponent A, and is independent of x. There are three important 
properties of the 4. First, basis vectors in each 4 can be chosen to comprise a basis 
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set for the tangent space. Second, the Fi are in general not orthogonal. Third, the 
decomposition of tangent space into the F, depends on the phase-space location x. In  
particular, if a t  x(0) we have & x ~ & ( x ( O ) ) ,  then 

M(t,O)Sx€F,(x(t)). 

The short-time contribution A,(t) to  A, (with unit multiplicity) is defined as the 
instantaneous exponential growth rate of axe&. That is 

Now, if we knew the t ( x ( t ) )  and the A(t),  we would know what perturbations on 
the attractor were unstable in the long term (i.e. the space spanned by the Fi 
associated with positive exponents or the 'unstable subspace'), and when (or where 
in phase space), the instabilities are most active. By analysing these data it may be 
possible to determine the cause of the instabilities underlying the chaos. For 
example, by examining a perturbation in Fl a t  a time when Al(t)  is a large local 
maximum and relating the perturbation to features in the base flow x(t), the 
features of the base flow responsible for the most dangerous instability may be 
determined. Note that these perturbations are in general different from the 
eigenfunctions of the local Jacobian at time t. The instantaneous growth of the local 
eigenfunctions can be much larger than that of the perturbations in the subspace 
Fl. However, in the long run the growth of perturbations in F ,  will dominate. The 
& provide more useful information regarding the stability of the system than the local 
eigenfunctions because they depend on the history of the flow rather than its form 
at  a single point. 

2.2.3. Algorithmic considerations 
The properties of t h e 4  can be exploited to compute the entire Lyapunov exponent 

spectrum (of a finite-dimensional system). A number of basically similar numerical 
approaches have been suggested (Benettin et al. 1980; Wolf et al. 1985; Eckmann & 
Ruelle 1985; Greene & Kim 1987; Goldhirsch, Sulem & Orszag 1987). All of the 
methods evolve a set of perturbations and obtain information about the growth rates 
associated with the &. The differences between the approaches are strictly numerical 
and are negligible when the methods are applied correctly. Following Benettin et al., 
an initially orthogonal set of N perturbations is evolved by integrating the equations 
of motion for both the base flow x(t) and the perturbations. Each perturbation can 
be decomposed onto the set of basis functions chosen from the 4. As time proceeds, 
the components grow or shrink exponentially, according to  A,(t), and since A, 
dominates, all of the perturbations ultimately tend towards Fl. Before the set of 
perturbations become numerically indistinguishable, a Gram-Schmidt reortho- 
gonalization is performed. The first perturbation in the set is simply renormalized, so 
it will evolve to F,, and thereafter the normalization factor is the growth undergone 
by perturbations in F, since the last renormalization; thus, the logarithm of the 
factor is an approximation to the short-time contribution to A,, 

The second perturbation in the set is then made orthogonal to  the first, which has 
the effect of subtracting out the growth of the component in F,. The fastest growing 
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component of the remainder is thus in F, and F, (i.e. F, @ F, = E,) ,  and will be 
orthogonal to F,. Area elements in this subspace grow at the rate given by the sum 
of the first two Lyapunov exponents. The normalization factor for the orthogonalized 
second perturbation yields the short-time contribution A,(.!). Proceeding iteratively, 
the normalization of the third perturbation will give the short-time contribution 
h,(t), and in principle all N Lyapunov exponents can be computed. The set of 
perturbations obtained in this manner is identical to the set obtained by 
orthogonalizing the 4, starting with Fl and are called the Lyapunov perturbations 

The unavoidable problem with computing Lyapunov exponents, especially for 
model systems with many degrees of freedom, is that the convergence of the running 
average exponents to their asymptotic values is slow. Goldhirsch et al .  (1987) 
conjectured that the average converges as (l/t), but the convergence may be even 
slower (see 53.3). This difficulty is bypassed when the short-time contributions to the 
Lyapunov exponents are studied, because the convergence of the initial per- 
turbations to the appropriate subspaces is exponentially fast. Therefore, after a brief 
initial relaxation the Lyapunov perturbations and the short-time contributions are 
available. However, as discussed above, L, is not in general an element of 4 (though 
L ,  is in Fl) because the F, are not orthogonal. The important property of the 4 for 
thc short-time Lyapunov exponent analysis is that they span the unstable subspaces. 
As pointed out by Greene & Kim (1987), the orthogonalized Lyapunov perturbations 
span the same spaces and will therefore serve equally well in the short-time analysis. 
It is these Lyapunov perturbations which are examined in $4. 

(Li). 

3. Numerical simulations 
3.1. Numerical method 

To simulate Taylor-Couette flow we solved the three-dimensional incompressible 
Navier-Stokes equations in an axially periodic domain between concentric cylinders. 
A spectral method using expansion functions that satisfy the boundary conditions 
and continuity equation had previously been developed for this flow (Moser, Moin & 
Leonard 1983) and used extensively for computations of a curved turbulent channel 
(Moser & Moin 1987). The linear part of the equations is time-advanced using the 
Crank-Nicolson (implicit) scheme, while the nonlinear term is time-advanced using 
a compact storage, third-order Rung-Kutta (explicit) scheme devised by A. Wray 
(private communication). This code was modified to allow the computation of N 
Lyapunov exponents by including N perturbation fields which evolve according to 
the linearized equations. 

Lyapunov exponents are invariant to smooth transformations of the phase-space 
coordinates. We are thus free to choose a computationally convenient inner product 
for the orthogonalization procedure discussed in 5 2.2.3. The orthogonalization 
procedure is performed at  a point in the computation a t  which the perturbation fields 
are represented as a finite Fourier series in 0 and z with wavenumbers k,  and k, for 
each of N,+ 1 radial locations tj  = ~ ( C O S  (nj/N,.)+ 1 ) .  Let 62ii(k,, k z , j )  and 6v”,(k,, k z , j )  
be the Fourier transforms of the ith velocity components of the two perturbations 6u 
and 6v. The inner product is then defined as 

3 N r  

(h 6 ~ )  = C X X X Re {&&(k,, k , , j )  6@(k, ,  k , , j ) } .  
1-1 j-0 ke>O k ,  
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FIQURE 1. Photographs of the experimental flow near the transition from quasi-periodicity to 
chaos. The values of R/R, are (a) 10.6, ( b )  11.2, and (c) 11.9. The flows are visualized with a 
suspension of small platelets, and the dark bands indicate inflow and outflow jets. Photographs 
courtesy of Anke Brandstater and Harry Swinney (see Brandstater & Swinney 1987). 
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Note that this is not a consistent approximation of the L2 inner product of the two 
perturbations, but is closely related to the Chebychev norm in S. 

Because of the azimuthal and axial periodicity of the model system, perturbations 
corresponding to axial or azimuthal rotations will neither grow nor decay, and will 
thus yield zero Lyapunov exponents. There is no need to include them in the 
computations. To eliminate the axial and azimuthal shifts, all perturbations are 
made orthogonal to them in a pre-conditioning step of the orthogonalization 
procedure discussed in $2.2.3. This reduces the number of perturbations which must 
be carried in the computations by two. For the case of periodic and quasi-periodic 
Taylor-Couette flow, the azimuthal shift is a perturbation on the attractor since 
these states consist of azimuthal travelling waves. Thus, by eliminating the 
azimuthal shift in these cases, we eliminate a zero exponent of the flow. The periodic 
flow will have no zero exponents and the quasi-periodic flow will have one zero 
exponent (instead of one and two respectively). In all cases the axial shift, and in the 
chaotic case the azimuthal shift as well, is off the attractor; these shifts correspond 
to Lyapunov exponents which are in some sense ‘parasitic’, and can be ignored. 

3.2. Validation of computations 
The numerical code used here was validated by Moser and co-workers (Moser et al. 
1983; Moser & Moin 1984) by comparisons with numerous experimental results 
(including King et al. 1984) as well as the code of Marcus (Marcus 1984a,b). For 
example, the travelling wave frequencies found with the code used here agree to 
within one part in lo3 with the experiments of King et al. and to within one part in 
lo4 with the results of Marcus (Moser & Moin 1984). 

The computational effort necessary to estimate N Lyapunov exponents is at  least 
N +  1 times that required to compute the base flow. The simulations must therefore 
be performed with as few numerical degrees of freedom as possible. The standard 
resolution used here was 16 Chebychev modes radially and 32 Fourier modes both 
azimuthally and axially. The nonlinear terms were computed on a physical grid and 
dealiased using the 312 rule. 

To verify that this resolution was sufficient to accurately represent the flow, 
several states at  Reynolds numbers below the transition to chaos was computed and 
compared with experimental results, as well as to the computations of Coughlin 
( 1990). In addition, higher-resolution simulations were performed to confirm the 
adequacy of this resolution. To match the experimental conditions ($2.1), the 
axial wavelength was fixed at  2.56 and the azimuthal period was set to in. This 
allows the simulation of one pair of Taylor vortices and one period of the travelling 
waves in the m, = m2 = 4 quasi-periodic state. Any axial or azimuthal symmetry- 
breaking bifurcations in the experiment are therefore suppressed in the 
simulations. 

In the experiments, the quasi-periodic state was observed from R/R, = 10 until a 
transition to aperiodicity at about RIR, = 11.7. Figure 1 shows photographs of the 
experimental flow a t  three Reynolds numbers. To mimic the experiments, the 
simulation was initialized at R/R, = 10.6 with random noise and evolved until the 
asymptotic quasi-periodic flow developed. Using this case as an initial condition, the 
Reynolds number was increased or decreased in small steps to determine the range 
of stability of the quasi-periodicity. An illustration of the flow at R/R, = 10.6 is 
shown in figure 2, which should be compared to figure 1 (a) .  The large-scale features 
of the flow, namely the Taylor vortices and the travelling waves on the vortex 
boundaries, are readily apparent. Note the high-speed and low-speed azimuthal jets 

4 FLM 233 
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FIGURE 2. Azimuthal velocity contours in the r-plane a t  i: = 0.31 for the quasi-periodic flow in the 
simulation at RIR, = 10.6. Solid contours indicate velocities greater than the plane average, dotted 
contours are less than the plane average. The contour increment is 0.03U. 

on the vortex boundaries in figure 2. These are the outflow and inflow boundary jets 
respectively (see $2.1), which will be of great interest in $4. 

In  both the experiments and the simulations the first travelling wave frequency 
was 0.33 m,Q. The ratio of the two travelling wave frequencies (w, /w,)  in the 
experiment and computations agrees to  2 YO over the Reynolds-number range for 
which they are both quasi-periodic. Also, this ratio changed by less than 1 % when 
the resolution was doubled. As the Reynolds number was decreased in the 
simulation, the quasi-periodic state remained stable to RIR, x 9.4. Below this 
Reynolds number, a third frequency (w3)  of motion appeared. Coughlin (1990) has 
studied this case in detail with a different spectral code at higher resolution, and 
confirms the appearance of w3. The good agreement of our simulation both with 
experiments and with simulations a t  higher resolutions gives us confidence that our 
resolution is sufficient for the weakly chaotic state to be studied here. 

The Lyapunov exponent computations were also validated in tests on the quasi- 
periodic flow, for which A, and A, should be zero, corresponding to the two 
independent frequencies of motion. Recall that  the code for computing Lyapunov 
exponents (see 0 3.1) removes perturbations Corresponding to azimuthal and axial 
rotations. This should remove one of the two zero exponents for the quasi-periodic 
flow. That is in fact what occurs. To check that the code was performing correctly, 
the perturbations corresponding to azimuthal rotations were left in, and a second 
zero exponent appeared. Finally, a periodic (one travelling wave) state for a different 
axial wavelength and azimuthal wavenumber regime was computed, and the 
removal of perturbations corresponding to azimuthal rotations resulted in the 
removal of the (single) zero Lyapunov exponent. 

3.3. Transition to aperiodicity (chaos) 
In this section a transition to a chaotic flow from quasi-periodicity will be illustrated 
using the standard tools of nonlinear dynamics. This transition was approached both 
from below and from above in Reynolds number, and no hysteresis was observed, 
indicating that the bifurcation to  chaos is supercritical for the parameter values 
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studied here. The asymptotic flow a t  RIR, = 10.98 is quasi-periodic. At R/R, = 
11.15, a quasi-periodic initial condition taken from the asymptotic flow at RIB, = 
10.98 did not relax to quasi-periodicity even for an evolution of several hundred 
cylinder periods. At  a siightly higher Reynolds number, the aperiodic part of the 
velocity variation is larger. The transition to aperiodicity thus occurs in the 
Reynolds-number range 10.98 < R/R, < 11.15. 

The computer resources necessary to accurately compute a partial Lyapunov 
exponent spectrum are too great to study many different Reynolds-number cases. In 
this study, two cases were chosen: a quasi-periodic state at RIR, = 9.8, and an 
aperiodic state a t  R/R, = 11.3. The experimental flows were studied using a time 
series of a single observable, the radial velocity at an arbitrarily chosen point on the 
midplane of the gap between the cylinders. As a f i s t  step in our analysis we repeat 
the experimental analysis using the same observable. The velocity time series from 
the simulations and the corresponding power spectra derived from them we shown 
in figure 3. The large-scale variations of velocity in the chaotic time series are 
essentially similar to those in the quasi-periodic time series, except that there are 
many more small-scale fluctuations in the chaotic case. The power spectrum of the 
chaotic system displays a broadband noise component at  a level of approximately 

at 
low frequencies. The rise in the background noise level a t  low frequenaies in the 
quasi-periodic case is just due to the limited length of the time series (22OlSa) used 
to compute the spectrum (a Hanning-window fast Fourier transform was used). The 
sharp peaks in the spectrum are not fully resolved, resulting in the apparent noise. 
The chaotic spectrum was computed with a similar length time sample (220/Q) and 
would thus have a similar noise level, but the noise due to the chaos i s  several orders 
of magnitude higher. 

Time-delay reconstructions (Packard et a2. 1980; Takens 1981) of the attractors 
from the radial velocity time series are shown in figure 4. Given a scalar time series 
{ z ( t ) } ,  an n-dimensional vector time series is formed by successive time delays: 
x( t )  = ( z ( t ) , z ( t + ~ ) ,  ... , z ( t + ( n - l ) ~ ) ) ,  WhereTisthetimedelay, ThechoiceofTfor the 
reconstructions shown here was made using the information-theoretic criteria 
developed by Fraser & Swinney (1986). The reconstructed ohaotic attractor in figure 
4(b)  is more disordered than the quasi-periodic attractor in figure 4 ( a ) .  These 
reconstructions should be compared to figure 6 in Brandstater & Swinney (1987), 

The evidence presented above that our two cases are quasi-periodic and chaotic is 
qualitative. Computations of the Lyapunov exponent spectra for these cases yield 
quantitative measures of the attractors. The Lyapunov exponent estimates were 
obtained using the following procedure: the base flow was evolved until an 
asymptotic regime was reached, and then several perturbation Adds were added to 
begin the Lyapunov exponent computation. The base flow and the perturbations 
were then evolved until the perturbations had relaxed to their asymptotic evolution, 
and at  that point the long-time running averages of the exponents were begun. 

For the quasi-periodic flow, which will be discussed later, the asymptotic regime 
of the base flow was reached when the azimuthal wave speed relaxed to periodic 
oscillations. This required approximately 40 cylinder revolutions when the base flow 
was initialized with energy in the appropriate azimuthal wavenumbers. For the 
chaotic flow, there is no reliable way to determine if an asymptotic regime has been 
reached, but an evolution of 50 cylinder periods was sufficient to produce 
reconstructed attractors and power spectra that did not vary significantly at later 
times. 

at low frequencies, whereas the quasi-periodic case has a uoise level at 

4-2 
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FIGURE 3. Radial velocity time series v,(t) at midgap for the computed (a) quasi-periodic flow 
(RIR, = 9.8) and (b )  chaotic flow (R/R, = 11.3), with graphs of the associated power spectra in 
(c, e) and ( d , f ) ,  respectively. 
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FIQURE 4. Time-delay-coordinate reconstructions of (a) the quaai-periodic attractor at RIR, = 9.8 
and ( b )  the chaotic attractor at RIR, = 11.3. For both cases a time series of the radial velocity near 
the midgap was used with a time delay of O.O9/sl. 
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FIGURE 5. Convergence of the first five Lyapunov exponent estimates XJt )  towards their 
asymptotic values A, for the chaotic flow at RIR, = 11.3. 

For the chaotic flow, an initial set of five perturbations was used to obtain 
estimates of the five largest Lyapunov exponents. When it became clear that more 
exponents would be required to obtain a dimension estimate using the Kaplan-Yorke 
conjecture, an additional nine perturbations were added to the computation, 
yielding (less well-converged) estimates of the next nine Lyapunov exponents. Recall 
that the inclusion of additional perturbations does not affect the original set of 
perturbations in any way. 

The results of the Lyapunov exponent computations are summarized in table 1. 
The evolution time over which the running averages were performed is indicated for 
each set of exponents. Note that the quasi-periodic attractor has the requisite double 
zero Lyapunov exponent, and no positive exponents. There are no more than five 
positive Lyapunov exponents for the chaotic attractor (recall that there must be at  
least one zero exponent). The Kaplan-Yorke dimension of this attractor is estimated 
to be 8.2 0.9. 

The convergence of the running average of the first five exponents is shown in 
figure 5. Note that the exponents converge extremely slowly. In  figure 6 the 
convergence of A, with inverse time is shown. If the conjectured l / t  convergence of 
Goldhirsch et al. (1987) holds, then it does so only on computationally inaccessible 
timescales. Even at the minimal resolution used here, the evolution of the base 
trajectory and five perturbations for one cylinder period required over 2000 s on a 
Cray -Y MP. 

Because the long-time averages converge slowly, it is difficult to quantify the 
uncertainty associated with an exponent average at finite time. For the quasi- 
periodic case in table 1, the exponent contributions relax to a periodic form (see $4.3) 
and the long-time averages can therefore be found with excellent accuracy. The 
uncertainty estimates for the chaotic case in table 1 were derived by assuming that 
the average of the contributions over one period of the waveform flex (see $4.1) is 
uncorrelated with the average over other periods. The correlation of the average over 
successive periods was found to be less than 0.2 for the exponents we calculated. 
With this assumption the variance of a Lyapunov exponent averaged over N,,, 
periods is just l/Nper times the variance of the average over one period. This was used 
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FIQURE 6. Convergence of the &(t) towards A1 for the chaotic flow at RIR, = 11.3, plotted 
versus inverse time. 

A152 (bits) RIR, = 9.8" RIR, = 11.3' 

4 0" 0.052f0.011 
A, 0.000 fO.001 0.055 f 0.010 

-0.169 f O . 0 0 1  0.029f0.010 
A 4  0.006 0.010 
A, 

A, 
As - 0.004 f 0.010 

- 0.006 f 0.033 
A, -0.041+0.031 
A8 -0.096f0.025 
A9 -0.050 f 0.030 
A10 -0.123 f 0.037 
All  -0.128 f 0.028 

- 0.137 f 0.033 
4 3  -0.186f 0.030 
A,* -0.183 f 0.029 

A12 

a Averaging time was 295152. 
' Averaging time was 5721P for A, -A ,  and 58/P for A, -Al4. 
"By definition (not computed, see text). 

TABLE 1. Estimated Lyapunov spectrum for the two Reynolds numbers studied. The units are bits, 
where bits indicates the logarithm base two. See text for an explanation of the uncertainty 
estimates. 

to determine the variance of each exponent estimate in table 1. The deviation is 
reported as the uncertainty in the table. Note that the assumptions underlying this 
analysis imply that the exponents converge like l/& rather than the l / t  convergence 
conjectured by Goldhirsch et al. (1987). 

3.4. Comparison to experiments 
Brandstater & Swinney (1987) studied a large number of quasi-periodic and chaotic 
states over a wider range of Reynolds numbers than has been explored in our 
simulations. Their principal result was that the transition to chaos is gradual; that 
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is, the fractal dimension of the chaotic attractor increases slowly with Reynolds 
number. Our simulation does not contradict this observation. However, chaos was 
detected in the simulation at  a Reynolds number 5% lower than the observed 
transition in the experiment, and the Lyapunov exponent calculation showed a 
significantly larger value for the fractal dimension near the onset of chaos. These 
differences are not surprising. Brandstater & Swinney comment that small-scale 
fluctuations were observed in visualizations of the quasi-periodic states prior to the 
Reynolds number at which the dimension estimate began to rise above two ; this is 
visible in the photograph of their flow at R/R,  = 11.2 (see figure 1).  These 
fluctuations did not affect the dimension estimates because they were below the noise 
level in the experimental measurements. 

The power spectra from the experiment at R/R, = 11.4 (see figure 3 of Brandstater 
& Swinney 1987) indicate no more than five decades of signal-to-noise separation 
between the discrete frequency peaks and the broadband noise level. In  contrast, the 
power spectrum presented in figure 3 for the chaotic attractor found in the 
simulation at  R/R,  = 11.3 has at  least six decades of separation. If chaotic 
broadband noise at this level were present in the experiments, it would not have been 
detected. Also, if a dimension-estimating algorithm is correctly applied to the data, 
it will only measure the fractal-like scaling of the attractor above the experimental 
noise floor. Thus any experimental (including numerical experiments) determination 
of dimension is only a statement about the attractor’s structure above some phase- 
space lengthscale. The correct interpretation of Brandstater & Swinney’s results, 
as they carefully state, is that chaos appears above the noise in their system at 
R/R,  x 11.7. 

Experimental time series data are unavoidably contaminated with (at least) 
measurement noise. One standard technique for removing noise is to low-pass filter 
the time series. The filter cutoff used in the experiments of Brandstater & Swinney 
was about 20 times the inner cylinder frequency. In the simulations, the 
computational noise floor is extremely low, and small-scale, relatively high-frequency 
fluctuations are observable, e.g. the time series in figure 3. To demonstrate the effect 
of low-pass filtering and limited resolution the attractor is reconstructed in figure 
7 from the simulation time series after it wm low-pass filtered with cutoffs at 20 and 
15 times the cylinder frequency. These should be compared to the original 
reconstruction in figure 4. Clearly, some dynamics on the attractor are removed by 
the low-pass filtering. If this also occurred when the experimental data were filtered, 
some part of the true chaotic dynamics would be deleted along with the high- 
frequency noise. Thus, beyond the apparent transition to chaos, the experimental 
dimension estimates are likely to underestimate the attractor dimension. 

There are also two aspects of the simulations which should be considered in any 
comparison with the experiments. First, axial periodicity is assumed in the 
computational model, while in the experiments the finite length of the cylinder 
provided end effects and axial wavelength modulations. Second, the computations 
are done with finite though adequate spatial and temporal resolution. Care was taken 
to minimize these limitations; however, they cannot be eliminated aa a source of 
discrepancies with experiments. 

It is important to note that a four-fold azimuthal symmetry was imposed in the 
computation model. A transition to chaos that broke this symmetry would therefore 
not be allowed, and could not be observed in the simulations. If the chaotic transition 
in the experimental system required breaking the azimuthal symmetry of the quasi- 
periodic state, the transitions observed in the simulation and the experiment would 
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FIGURE I. Time-delay-coordinate reconstructions of the chaotic attractor at R/R,  = 11.3 using 
low-pass filtered data. In (a )  the filter cutoff frequency is 2052; in ( b )  the cutoff frequency is 1552. 
The time delay is 0.09/52. 
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be vastly different. This is not the case. The close correspondence in the parameter 
values and form of the observed transitions indicates that the azimuthal symmetry 
need not be broken at  the transition to chaos in Taylor-Couette flow. 

In summary, the current simulation results, which indicate a transition to chaos 
slightly below R/Rc = 11.15 are consistent with the experimental results of 
Brandstater & Swinney (1987). The apparent disagreement between simulations and 
experiments in the transition location and the estimated dimensions may be caused 
by the limited precision of the experimental measurements. The assumption of axial 
and azimuthal periodicity in the simulations may also preclude an exact 
correspondence with the experiments. 

4. Short-time Lyapunov exponent analysis 
The estimation of even a small number of Lyapunov exponents for an attractor of 

a large-scale fluid dynamics model consumes enormous computer resources. If the 
result of this expenditure is only a handful of numbers, and with those an estimate 
of the attractor dimension, then it is not clear that the expense is worthwhile. 
Fortunately, as was discussed in $2, the short-time contributions A,(t) to the long- 
time average exponents as well as the perturbation fields themselves are local phase- 
space properties on the attractor and can be used to gain information about the 
mechanisms at work in the fluid flow. Any disturbance with a component in the 
subspace spanned by the Lyapunov perturbations corresponding to the positive 
Lyapunov exponents will exhibit long-term exponential growth. The task is then to 
discern what mechanisms are responsible for the exponential growth by examining 
the perturbations which grow. In general this would be difficult; however, if the 
growing perturbations have a localized structure in physical space the analysis could 
be greatly simplified. 

In this section we will apply short-time Lyapunov exponent analysis to our 
simulations of Taylor-Couette flow. The Lyapunov perturbation fields will be shown 
to be highly structured spatially, and these structures will be used to discover the 
physical mechanism underlying the chaos. This mechanism is a Kelvin-Helmholtz 
instability originating in the high-shear region of the outflow jet. The short-time 
Lyapunov exponent contributions A,(t)  vary enormously, but a simplified one- 
dimensional stability analysis of the outflow jet will show that the jet instability is 
always present, with a relatively small difference in stability as the base flow evolves. 
This apparent paradox is resolved by noting that the A,(t) and the stability 
eigenvalues are different quantities. The A,(t)  are volume-averaged growth rates, 
while the stability eigenvalues are spatially local. The actual value of A,@) will be 
shown to depend on the magnitude of the perturbation energy in the unstable jet and 
alignment of the perturbation with the eigenmode of the instability. 

4.1. The chaos-producing mechanism 
Figure 8 shows the contributions h,(t) to A, and A, over a short time interval for the 
chaotic attractor at  R/Rc = 11.3. The long-time average A, is 0.05252 bits (where bits 
refers to the logarithm base two) but A, ( t )  can be almost two orders of magnitude 
larger than that, and of either sign. Recall that these are exponential growth rates. 
Although A, is positive, the perturbations corresponding to A, will decay 
exponentially for short time intervals. At other times, it will grow at exponential 
rates much larger than average. This wide variation in short-time growth rate is seen 
for all Lyapunov exponents computed in this problem. The long-time average A, is 
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FIGURE 8. Short-time contributions A*@) to A, (solid line) and A, (dotted line) for the chaotic flow 
at R/R, = 11.3. The extrema in A,(t )  that will be studied in detail are labeled T,,, and T,,,. Note 
that A, = 0.05251 bits and A, = -0.00452 bits. The running averages X , ( t )  obtained from A,(t)  are 
shown in figure 6. 

nearly zero, but A5( t )  can be large and of either sign. The large fluctuations of h5(t) 
correspond in time with those of Al(t). In fact, short-time contributions to the first 
to fourteenth exponents all show approximately the same large-scale variation (with 
different detailed fluctuations). This suggests that  the same physical process is 
driving the instantaneous instability of all these perturbations (see below). 

I n  figure 9, the streamwise (azimuthal) velocity of the base flow is illustrated at 
times Tmin, corresponding to the large negative peak in A,(t) in figure 8, and T,,,, 
corresponding to  the succeeding large positive peak. The analysis presented below 
will concentrate on these two times. Other times have been examined to ensure that 
the conclusions drawn from this analysis are valid. The two times Tmin and Tmax are 
seen to correspond to the relaxation and flection, respectively, of the underlying 
waveform. This ‘flex’ is the interference of the two m = 4 azimuthal travelling 
waves, and its period is the difference between the travelling wave frequencies w1 and 
w2. 

Examination of the perturbation field corresponding to A,  at Tmin and T,,, 
provides further evidence about the instability. I n  figure 10, the azimuthal velocity 
of the perturbation is shown for the same r-plane as in figure 9. At both times, and 
all other times examined, the perturbation is localized on the outflow or high-speed 
boundary jet and along the outer wall (see §4.2), with some weak activity on the 
inflow or low-speed jet. The structure of the perturbation on the outflow jet is 
reminiscent of the most unstable eigenfunction for a Kelvin-Helmholtz instability of 
a plane jet: the structure is dominated by regions of streamwise velocity that 
alternate in sign along the outflow jet, with opposite sign across the jet. In  addition, 
the wavelength of the Lyapunov perturbation is close to  the wavelength of the 
maximally unstable Kelvin-Helmholtz eigenfunction for a jet of this thickness (see 
below). I n  the remainder of this section we will present evidence supporting the 
assertion that a Kelvin-Helmholtz- type instability drives the transition to chaos in 
Taylor-Couette flow. 

An examination of the base flow reveals the presence of nearly two-dimensional 
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FIGURE 9. Azimuthal velocity contours at i: = 0.31 for the base flow at times (a) Tmin and ( b )  T,,,. 
Solid contours indicate velocities greater than the plane average, dotted contours are less than the 
plane average. The contour increment is 0.03U. 

shear layers in the outflow boundary jet. Recall that both jets are dominated by the 
azimuthal component of velocity, and therefore the radial component of vorticity is 
dominant. The radial vorticity field of the base flow at times Tmin and T,, is shown 
in figures 11 and 12. The r-plane used in figure 11 was chosen because the maximum 
of w, occurs at  or near this radius at all times (figures 9 and 10 are in this same plane) ; 
also, the &planes shown in figure 12 are those for which w, is maximum. At  both 
times w, is concentrated in thin, relatively flat sheets that are approximately aligned 
in the radial and azimuthal directions, though they are slightly inclined to the r- and 
&axes at time T,,,. These sheets correspond to the shear regions of the outflow 
boundary jet (one on each side of the jet). They extend across most of the gap width 
and through at least half the domain in 0.  The extent of the sheets is many times 
their thickness; therefore, the radial vorticity is a good approximation of the shear 
in the jet. At time T,,,, the shear (vorticity) is stronger on the side of the outflow jet 
that is close to the inflow jet ; for an asymmetric jet such as this, the expected shear 
instability would be stronger on the high-shear side. This asymmetry favouring the 
high-shear side can be seen in the perturbation field at  time Tmax in figure lO(b) .  In 
contrast, a t  Tmin the outflow is straight, the shear is more nearly equal on the two sides 
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FIGURE 10. Azimuthal velocity contours at 4 = 0.31 for the first Lyapunov perturbation field at 
times (a) T,,, and ( b )  T,,,. Positive velocity contours are solid; negative velocity contours are 
dotted. The contour increment is 0.3. The dashed lines indicate the approximate boundaries of 
the outflow jet. 

of the jet, and the perturbation strength at this time in figure 10(a) is more nearly 
symmetric across the jet. A t  both times, the azimuthal location of the region of 
maximum shear (near where the jets are closest) is where the perturbation field 
strength is largest. Also, as will be shown below, the perturbation gains energy only 
in the shear regions of the jet. All of this evidence reinforces the hypothesis that the 
exponentially growing perturbations associated with the chaos in this system are due 
to a shear instability of the outflow boundary jet. 

The shear layer is essentially flat and uniform radially. If the Lyapunov 
perturbation field corresponds to an instability of the shear layer, it should then be 
largely two-dimensional (corresponding to the most unstable disturbances for a plane 
free shear layer), with little or no structure in the radial direction. Contours of 
azimuthal velocity for the perturbation in a plane roughly coincident with the 
strongest thin shear layer at  time T,,, are shown in figure 13. The only significant 
variation of the perturbations in the 'radial ' direction (except for very near the wall) 
is the tilting of the disturbance contours away from vertical. This tilting is not 
surprising because the jet has a radial velocity component, and the most unstable 
disturbance in a jet has no variation perpendicular to the jet velocity and the shear 
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FIGURE 1 1 .  Contours of the radial vorticity w, of the base flow at r^ = 0.31 for times (a) T,,, and ( b )  
T,,,. Positive vorticity contours are solid ; negative vorticity contours are dotted. The contour 
increment is O.SU/S. In ( b ) ,  the diagonal line is the intersection of the plane shown in figure 13 with 
this plane. 

direction. The vector superposed on the contours in figure 13 is the in-plane 
component of the base flow velocity at that point (midgap point). The perturbation 
is approximately aligned as expected for a jet instability. 

The localization of the instability to the outflow jet is also supported by the 
experiments of Gorman & Swinney (1982). They noticed that as the transition to 
chaos was approached, ‘fuzz’ appeared on the outflow jet. As we have shown, the 
chaotic part of the flow commences as small-spatial-scale disturbances on the outflow 
jet-this is probably what Gorman & Swinney observed. In another parameter 
regime, Coughlin (1990) showed that instabilities of the outflow jet also underlie 
several bifurcations to ordered states. 

4.2. Temporal evolution of the first Lyapunov perturbation 
So far, our examination of the base flow and perturbation fields has provided 
qualitative evidence linking the chaotic instability and a Kelvin-Helmholtz- type 
instability of the outflow boundary jet. We now turn to a quantitative analysis to 
obtain a more complete description of the evolution of the perturbation. In 
particular, it is essential to understand the difference in the short-time Lyapunov 
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FIQURE 12. Contours of w, for the base flow at times (a) T,,, and (b) T,,,, in the (r,z)-plane of 
maximum w,. Xegative contours are dotted. The contour increment is 0.6U/8. In  (b) ,  the diagonal 
line is the intersection of the plane shown in figure 13 with this plane. 

FIQURE 13. Azimuthal velocity contours for the first Lyapunov perturbation field in a plane 
approximately tangent to the shear layer at  the point of maximum w, at time T,,,. Positive 
velocity contours are solid, negative velocity contours are dotted. The contour increment is 0.4. 
The arrow is the in-plane component of the base flow velocity vector a t  that point. This plane 
intersects the planes shown in figures 11 (b) and 12 (b) at  the lines shown in those figures. The 
vertical axis extends from the inner wall to the outer wall. 

exponent contributions h,(t) between times Tmin and T,,,. This is of interest because 
there is no reason from stability considerations to expect such a large variation in the 
short-time contribution. In the course of this discussion the difference between the 
short-time Lyapunov exponent analysis and a linear stability analysis about an 
unsteady flow at  an instant of time will be made clear. 

To understand the difference in short-time Lyapunov contributions, we first 
consider the convective derivative of the first perturbation energy density (DE/Dt 
where E = $3u-6u), using the base-flow convection velocity. The integral in 0 and z 
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FIQURE 14. (a) The (0, 2)-integral DE/Dt of the convective derivative of energy density and ( b )  the 
(0, %)-integral of energy density (E) aa a function of r for the first Lyapunov perturbation field, at 
times T,, (solid curve) and Tmin (dotted curve). 

of the convective derivative of the energy density at  T,,, and T,,, is shown in figure 
14; the integrated perturbation energy densities are also shown. A t  both times the 
perturbation energy is growing at  the r-locations where the shear layers are present 
(see figure 12), while the energy is decaying near the outer wall. The growth rate near 
r" = 0.3 (where w, is maximum) is higher for the perturbation at T,,,, while the decay 
rate near the outer wall is larger at  Tmin. In addition, the integrated energy in the 
perturbation, shown in figure 14(b), is relatively higher in the growth region at  time 
Tmax and relatively higher in the decay region at Tmin. This analysis shows that the 
perturbation energy is generated away from the walls in the region where the shear 
layers are strongest, and dissipates near the outer wall. Recall that the high shear 
and the perturbation are associated with the radial outflow boundary jet. The radial 
velocity associated with the jet convects the energy in the perturbation towards the 
outer wall. As it leaves the high-shear regions of the outflow jet and enters the 
viscously dominated near-wall region, the energy dissipates. Note also that at both 
times the perturbation energy is maximum near the outer wall, not in the high-shear 
region. Apparently, perturbation energy collects near the outer wall as it is being 
dissipated there. 
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FIGURE 15. Contours of (a) the base-flow radial vorticity ( b ) ,  the perturbation azimuthal velocity, 
and ( c )  the convective derivative of the perturbation energy density at time T,,,. Dotted contours 
are negative. Contour increments are (a) 0.6U/6, ( b )  0.3, and (c) 0.2. 

The integrated energy gives a general description of the perturbation evolution. A 
more detailed picture of the evolution can be obtained by examining the spatial 
structure of the convective derivative of the energy density. Contours of the base- 
flow radial vorticity, the perturbation azimuthal velocity and the convective 
derivative of the perturbation energy density in the ( r ,  2)-plane passing through the 
point of maximum energy growth are shown in figures 15 and 16 for times Tmin and 
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FIGURE 10. Contours of (a) the base-flow radial vorticity, (a) the perturbation azimuthal velocity, 
and (c) the convective derivative of the perturbation energy density at time Tmm. Dotted contours 
are negative. Contour increments are (a) O.f3U/8, ( b )  0.3, and (c) 0.4. 

-. 
T,,, respectively. At time Tmin this plane also happens to contain the point of 
maximum decay. These maximum-growth points are not far from the points of 
maximum radial vorticity (displaced by 0.958 along the jet) at both times; however, 
at time Tmin the maximum-growth point is also displaced outward in r from the 
maximum-vorticity point (by 0.188). The contour plots show that the high-growth 
regions are indeed centred on the shear layers. The maximum perturbation energy as 
indicated by the azimuthal velocity (which dominates) occurs in the shear region at 
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FIGURE 17. Azimuthal velocity profiles as a function of z for the base flow at the ( r ,  8)-locations 
of maximum radial vorticity for times T,,, (solid curve) and T,, (dotted curve). 

time T,,, though there is substantial perturbation energy spread out along the outer 
wall as well. A t  time Tmin, most of the energy is spread out along the outer wall. As 
the energy in the perturbation is carried to the outer wall by the outflow jet, it is 
also carried along the wall by the Taylor-Couette roll cells. Thus, the near-wall 
energy and decay is spread out over a large area. In  fact the maximum pointwise 
energy decay a t  times Tmin and T,,, differs by only 25% (1.8 and 1.4, respectively), 
suggesting that the large integrated decay shown in figure 14 is just due to the larger 
volume over which decay i s  occurring. In  contrast, the maximum pointwise growth 
at  Tmin and T,,, (1.6 and 4.2, respectively) differ by a factor of 2.5. This is consistent 
with the observation that away from the outer wall, the energy and growth regions 
are concentrated in the outflow jet shear layers, so that the difference in integrated 
growth between times Tmin and T,,, is due to stronger pointwise growth a t  time 
T,,,. However, the logarithmic convective derivatives of the energy density 
(l/E)(DE/Dt) at  the maximum-growth points differ by just 32% (2552 and 3352 
respectively, in bits). This implies that the difference in local growth rates in the 
shear layer is largely due to the lower perturbation energy density in the shear layer 
a t  time Tmin. 

To determine if the differences in stability of the outflow jet between times Tmin 
and T,,, could be responsible for the 32 YO difference in pointwise growth rates, a one- 
dimensional stability analysis of the jets was performed. Azimuthal velocity profiles 
were taken from the base flow along an axial line passing through the point of 
maximum shear at times T,,, and T,,, and used for Orr-Sommerfeld calculations. 
The point a t  which the magnitude of the radial vorticity (and therefore the shear) is 
maximum a t  time T,,, is located a t  i = 0.31, while a t  Tmin it is located at  4 = 0.25. 
The maximum radial vorticity (shear) is 15% larger a t  T,,, than a t  Tmin, apparently 
because the inflow and outflow jets are closer a t  T,,,. The azimuthal velocity as a 
function of z of the ( r ,  €'-locations of the radial vorticity maximum is shown in figure 
17 for both times. The inflow and outflow jets are apparent. Also, a t  T,,, the two jet 
shear layers have merged, resulting in a stronger shear layer with a larger velocity 
jump. The one-dimensional stability computations show that the jets at both times 
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FIGURE 18. The short-time contribution A,(t) (solid curve) and the maximum radial vorticity in 
the base flow w y  (dotted curve) for the chaotic flow at RIR, = 11.3. 

are unstable with amplification rates of 32.30 and 33.30 at times Tmin and T,,, 
respectively, suggesting that the jet is only slightly more unstable a t  time TmaX. 
While these amplification rates are an order of magnitude larger than the maximum 
value of h,(t), they are in good agreement with the maximum logarithmic convective 
derivative of the perturbation energy density reported above. Also, the most 
unstable wavelength in the one-dimensional computation is 0.778, in good agreement 
with the perturbation wavelength measured from figure 10 after accounting for the 
inclination of the perturbation (about 0.88). This is strong evidence that the growth 
of the Lyapunov perturbation is dominated by the Kelvin-Helmholtz instability as 
modelled by the one-dimensional stability analysis. 

The one-dimensional stability analysis is crude, ignoring as it does all three- 
dimensional effects. However, if the essence of the chaos-producing mechanism is the 
instability of the nearly two-dimensional shear regions, as argued in $4.1, then this 
analysis should at  least capture the relative stability of the jet at the two times. This 
difference in stability is not sufficient to explain the difference in the observed 
pointwise growth rates a t  the two times. The explanation is that the perturbation is 
more closely aligned with the unstable jet eigenmode at  T,,, than a t  Tmin. Not only 
is there more perturbation energy in the shear region of the outflow jet a t  Tmax, but 
the perturbation energy that is there is aligned to produce a (32%) larger 
exponential growth rate than at Tmin. 

Our analysis has shown that the large variations in h,(t) are not due'to a large 
variation in the stability of the base flow. Rather, the variations are caused by the 
distribution and alignment of the energy in the first Lyapunov perturbation relative 
to the base flow. At any time there are perturbations with instantaneous growth 
rates as large as h,(t) at  T,,, or larger. We must therefore ask why the first Lyapunov 
perturbation does not take such a form at all times. The answer is that a rapidly 
growing perturbation at some time (e.g. Tmin) does not evolve continuously into a 
rapidly growing perturbation at some later time (e.g. Tmax). This is not surprising 
since the base flow is continuously evolving and in particular the outflow jet is 
moving as the base flow 'flexes'. If the shear regions of the jet are moving, it would 
be expected that a perturbation would become ' misaligned ' as it evolved. Recall that 
the first Lyapunov perturbation is the one that has undergone and will undergo the 
fastest long-term exponential growth. It would therefore be expected that h,(t) 
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would be maximum near the time a t  which the shear in the jet shear layers (w,) is 
maximum since, other things being equal, this would produce the largest long-term 
growth. This is indeed the case, as can be seen in figure 18, where the A,(t) is plotted 
alone with the maximum in w,. The fact that the maximum short-time contribution 
leads the peak in w, by approximately half a cylinder period is apparently caused by 
dissipation near the outer cylinder increasing faster than the local growth rates in the 
shear regions. At time 277.1/56, when w, is maximum, the maximum pointwise 
growth rate is 30 YO greater than a t  T,,,, but the decay rate near the outer wall is also 
larger. 

We now have a clear picture of the evolution of the first perturbation from the 
maximum-growth time to the maximum-decay time and back to maximum growth. 
At Tmax, perturbation energy is being generated by the Kelvin-Helmholtz instability 
of the outflow boundary jet. The perturbation energy is convected out to the wall 
until a t  maximum decay the energy is concentrated a t  the outer wall, where the 
decay is occurring. By the time the maximum growth time is reached again, much 
of the perturbation energy at the outer wall has decayed, and new perturbation 
energy is being generated in the shear layer. The local decay near the outer wall is 
not significantly different at T,,, and Tmin, but there is a large difference in the local 
growth rates in the shear layer. 

4.3. Other Lyapunov perturbations 
To this point we have examined only the perturbation associated with A, ; however, 
from table 1 there are from three to five positive Lyapunov exponents, and we must 
examine the perturbation associated with each of them. The streamwise velocities of 
the second to fifth perturbations are shown a t  time T,,, in figure 19. Note that they 
are similar to the first perturbation in that activity is concentrated along the outflow 
boundary jet and is of similar detailed structure. The major differences are the 
lengthscale along the outflow jet and the distribution of disturbances along the jet. 
Also, the higher (slower growing) perturbations contain more energy on the inflow 
jet. The entire space of long-term unstable disturbances is thus associated with the 
Kelvin-Helmholtz instability of the outflow (and to a lesser extent the inflow) 
boundary jet. This being the case, any small-scale structure visible in the chaotic 
base flow should be concentrated a t  the outflow boundary jet. This has been observed 
experimentally (see figure 1 and Gorman & Swinney 1982) and is apparent at 
R/R, = 12.0 (figure 20) in the current computations. It is difficult to see any of the 
small-scale structure of the flow in the contour plots a t  R/R, = 11.3 because of the 
low magnitude of the fluctuations. 

4.4. Lyapunov analysis of quasi-periodic flow 
The short-time Lyapunov exponent contributions for the first non-zero Lyapunov 
exponent (A,) of the quasi-periodic attractor a t  R/R, = 9.8, are shown in figure 21. 
Recall that  A, is negative, corresponding to a perturbation that is exponentially 
damped in the long-term. The contributions are (nearly) periodic in time, since they 
reflect the average variation in the perturbations over the entire physical domain 
and are thus effectively in the rotating reference frame. The streamwise velocity of 
the base flow and the perturbation corresponding to A, a t  a maximum in the short- 

FIGURE 19. Azimuthal velocity contours at P = 0.318 and time T,, for (a) the second, ( b )  third, (c) 
fourth and (d) fifth Lyapunov perturbation fields for the chaotic attractor at R/R, = 11.3. Dotted 
contours are negative. Contour increments are 0.3U. The dashed lines indicate the approximate 
boundaries of the outflow jet. 
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FIQURE 20. Azimuthal velocity contours at r̂  = 0.31 for the chaotic flow at R/R,  = 12.0. High- 
velocity contours (greater than the plane average of 0.42U) are solid, low-velocity contours are 
dotted. The contour increment is 0.03U. 

I I I I I 
I50 I52 154 I56 I58 I60 

IR 

FIGURE 21. The short-time contributions AJT) for the quasi-periodic attractor in the simulation 
at RIR, = 9.8. 

time contributions are shown in figure 22. Again, the localization of the perturbations 
to the outflow boundary jet and the detailed structure of the perturbations is similar 
to that for A, in the chaotic case. The Kelvin-Helmholtz instability of the outflow 
boundary jet is active in this case as well. The major difference between this quasi- 
periodic case and the chaotic case is that in the quasi-periodic flow, the intervals of 
exponential decay outweigh the intervals of exponential growth, leading to  an 
overall decay. As the Reynolds number is increased toward the transition to chaos, 
the balance between the stable times and the unstable times on the attractor shifts 
(gradually) towards the unstable, since the Reynolds number of the inflow and 
outflow jets is increasing. The expected gradual dependence of the Lyapunov 
exponents on the Reynolds number suggests that the attractor dimension (as 
measured by the Kaplan-Yorke formula) will increase continuously from two a t  the 
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FIGURE 22. The aximuthal velocity contours for (a )  the base flow and (b )  the third Lyapunov 
perturbation at i: = 0.31 for a time corresponding to maximum A&). High-velocity contours in (a)  
are solid, low-velocity contours are dotted. Positive velocity contours in (b )  are solid, negative 
velocity contours are dotted. The contour increment is (a )  0.03U, ( b )  0.3. 

transition, unless the first exponent has a multiplicity higher than one. It is difficult 
to rule out a multiplicity of two for the first exponent, since in figure 5 the first two 
running averages have not separated. However, there is no reason to expect an exact 
multiplicity. 

5. Conclusions 
The results presented here may have broad relevance for the analysis of turbulence 
and transition. We will first summarize the results for the specific case of 
Taylor-Couette flow, and then discuss the more general implications of our 
technique. 

5.1. Chaos in Taylor-Couette Jlow 
A transition from (4,4) quasi-periodic Taylor vortices to chaotic Taylor-Couette flow 
was successfully simulated. It was found that there were quantitative differences in 
transition Reynolds number and attractor dimension between the current com- 
putations and the experiments of Brandstater and co-workers (Brandstater et al. 
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1983 ; Brandstater & Swinney 1987). The most likely cause of these differences is the 
relatively high noise level present in the experimental measurements compared to 
the current computations, and the low-pass filtering that was used in the experiments 
to eliminate noise. However, the current computations are in qualitative agreement 
with the experiments. I n  particular the results presented here support the conclusion 
that the transition to  chaos is gradual ; that is, the dimension of the attractor appears 
to increase continuously from two as the Reynolds number is increased. It was also 
noted that this transition to chaos occurred without breaking the four-fold symmetry 
of the quasi-periodic flow. 

The results of this study provide strong evidence that the chaos-producing 
mechanism in this flow is a Kelvin-Helmholtz instability of the outflow jet between 
the counter-rotating Taylor vortices. The Lyapunov exponent perturbation fields 
are seen to be concentrated on the outflow jet. Perturbation energy is created in the 
high-shear regions of the jet toward the inner cylinder and is convected outward. At 
the outer wall, the perturbations spread out and are dissipated. The instantaneous 
growth rates of the integrated perturbation energy (the short-time Lyapunov 
exponent contributions) are marked by a large-scale variation which is two orders of 
magnitude larger than the long- time-average Lyapunov exponents. This variation is 
associated with the ‘flexing’ of the modulated wavy Taylor vortices which are still 
present in the chaotic flow. Maximum growth occurs near the time of maximum flex, 
which is also the time of maximum shear in the outflow boundary jet. Eigenvalues 
from a one-dimensional stability analysis of the outflow jet are in good agreement 
with the maximum pointwise exponential growth of the perturbation energy in the 
jet. Both of these local measures of the jet instability show only minor variations in 
time. The contrast between the variation of the volume-integrated growth rates and 
the lack of variation in the local stability of the jet is explained by the distribution 
of perturbation energy a t  different times. At some times the perturbation energy is 
concentrated in the outflow jet, producing large integrated growth rates while a t  
other times little energy is in the jet, allowing dissipation near the outer wall to 
dominate. This is a demonstration of the difference between short- time Lyapunov 
exponent analysis and instantaneous linear stability analysis of unsteady flows. 

It was also noted that the same perturbation characteristics were present in the 
quasi-periodic flow (and probably a t  even lower Reynolds numbers). The major 
difference between the chaotic and quasi-periodic flows is that in the chaotic case the 
intervals during which perturbations grow slightly outweigh the intervals during 
which the perturbations decay, leading to long-term growth rather than long-term 
decay. 

5.2. Lyapunov exponent analysis 
The simulations described here, coupled with a new way of using Lyapunov exponent 
calculations, provided insight into the chaos-producing mechanism in Taylor- 
Couette flow. These new results point out the utility of Lyapunov exponent 
calculations for understanding complex physical phenomena. A large-scale simu- 
lation can provide an enormously detailed account of the time evolution of a fluid 
flow. The difficulty in analysing these data, especially in the case of turbulent flows, 
is knowing which features of the flow are of dynamical importance. Even a t  the 
transition to weak turbulence exhibited by Taylor-Couette flow, the available 
experimental and numerical data offer a daunting challenge. The short- time 
contributions to the Lyapunov exponents provided information as to  what times 
were important to  analyse. I n  Taylor-Couette flow, the perturbations corresponding 
to the Lyapunov exponents were spatially localized, thus providing an indication of 
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which flow features were important. However, i t  is likely that in some systems the 
perturbations will not be localized in space. In such cases they may be localized in 
some transformed space (e.g. Fourier space). It should also be noted that short-time 
Lyapunov exponent analysis can be applied to any closed flow, but that more work 
is required to develop similar techniques applicable to open flows. 

As we have seen the short-time Lyapunov exponent analysis yields more 
information than the exponents and dimension usually obtained from Lyapunov 
exponent calculations. This approach is made even more attractive by its avoidance 
of the principal difficulty in Lyapunov exponent calculations, namely the slow 
convergence of the long-time-average exponents. The promise of short-time 
Lyapunov exponent analysis is its ability to indicate instances when and regions 
where interesting phenomena occur. For example, such an analysis could possibly 
indicate what flow structures are responsible for the randomness of a turbulent flow. 

Short-time Lyapunov exponent analysis was successful in the weakly chaotic 
Taylor-Couette flow. In a more complicated flow, the analysis may be more difficult. 
In particular, a more chaotic flow may exhibit a large number of instability 
mechanisms. In that case a large number of Lyapunov perturbations may be needed 
to capture all of the mechanisms. This could prove to be too expensive in terms of 
computer resources to be practical. Another possible difficulty arises when the 
instability mechanism is not localized in space or time. In this case the perturbation 
fields will not be localized either, and it may be difficult to extract the mechanism via 
this analysis. In both of these cases, however, valuable information about the flow 
can be obtained. In the first case the most unstable mechanisms will be captured, 
while in the case of the non-localized mechanism this information itself is valuable. 
In the opinion of the authors, the short-time Lyapunov exponent analysis is 
potentially of such value that a t  least one Lyapunov perturbation should be 
computed as a matter of course in simulations of systems that are expected to be 
chaotic. Computing a single Lyapunov perturbation requires only a factor of two 
increase in computational effort, and can greatly increase the value of the simulation. 
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